FRACCIONES

Una fracción está compuesta por un **numerador** y un **denominador**.

- **Denominador** → Partes en que se divide la unidad.
- **Numerador** → Partes que tomamos de la unidad.

ACTIVIDADES

1. Completa la siguiente tabla.

<table>
<thead>
<tr>
<th>REPRESENTACIÓN ESCRITA</th>
<th>REPRESENTACIÓN NUMÉRICA</th>
<th>REPRESENTACIÓN GRÁFICA</th>
<th>REPRESENTACIÓN EN LA RECTA NUMÉRICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuatro quintos</td>
<td>$\frac{4}{5}$</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Diagrama de cuadrado dividido en 5 partes]</td>
<td>0</td>
</tr>
<tr>
<td>Siete quintos</td>
<td>$\frac{7}{5}$</td>
<td>[Diagrama de círculo dividido en 5 partes]</td>
<td>0</td>
</tr>
</tbody>
</table>

2. Partiendo del dibujo, halla la fracción que representa y escribe cómo se lee.

 a) $\frac{1}{8}$ → octavos
 b) $\frac{5}{7}$ →
 c) $\frac{1}{2}$ → medios
 d) $\frac{5}{6}$ →

 a) $\frac{2}{5}$
 b) $\frac{2}{3}$
 c) $\frac{4}{6}$
 d) $\frac{2}{5}$

 [Diagrama de círculo divisible y rectángulo]
FRACCIONES EQUIVALENTES

Dos fracciones \(\frac{a}{b} \) y \(\frac{c}{d} \) son equivalentes cuando el producto cruzado de numeradores y denominadores es igual.

\[
\frac{a}{b} = \frac{c}{d} \rightarrow a \cdot d = b \cdot c
\]

EJEMPLO

Las fracciones \(\frac{2}{3} \) y \(\frac{4}{6} \) son equivalentes, ya que \(2 \cdot 6 = 3 \cdot 4 \).

ACTIVIDADES

1. Dibuja las siguientes fracciones.
 a) \(\frac{3}{6} \)
 b) \(\frac{4}{6} \)
 c) \(\frac{2}{3} \)
 d) \(\frac{5}{10} \)
 e) \(\frac{4}{8} \)
 f) \(\frac{1}{2} \)

2. Observando el ejercicio anterior vemos que algunas fracciones, a pesar de ser diferentes, nos dan el mismo resultado. Coloca en dos grupos estas fracciones.
 Grupo 1: Fracciones que representan la mitad de la tarta.
 Grupo 2: Fracciones que representan dos tercios de la tarta.

3. Calcula tres fracciones equivalentes.
 a) \(\frac{9}{12} = \frac{____}{____} = \frac{____}{____} = \frac{____}{____} \)
 b) \(\frac{16}{24} = \frac{____}{____} = \frac{____}{____} = \frac{____}{____} \)
 c) \(\frac{2}{4} = \frac{____}{____} = \frac{____}{____} = \frac{____}{____} \)
 d) \(\frac{6}{12} = \frac{____}{____} = \frac{____}{____} = \frac{____}{____} \)

4. Halla el número que falta para que las fracciones sean equivalentes.
 a) \(\frac{1}{5} = \frac{x}{10} \)
 b) \(\frac{4}{3} = \frac{8}{x} \)
 c) \(\frac{x}{30} = \frac{2}{15} \)
AMPLIFICACIÓN DE FRACCIONES

- Para obtener una fracción equivalente a otra fracción dada multiplicamos el numerador y el denominador de dicha fracción por un número distinto de cero. Este método se llama amplificación.
- Observa que podemos obtener tantas fracciones amplificadas como queramos.

EJEMPLO

Obtén una fracción equivalente y amplificada de $\frac{1}{2}$.

$$\frac{1}{2} \rightarrow \frac{1 \cdot 3}{2 \cdot 3} = \frac{3}{6}$$

Las fracciones son equivalentes, es decir, $\frac{1}{2}$ y $\frac{3}{6}$ representan el mismo número.

ACTIVIDADES

1. Calcula fracciones equivalentes por amplificación.

 a) $\frac{1}{2} \rightarrow \frac{1 \cdot 4}{2 \cdot 4} = \frac{4}{8} = \frac{1}{2}$

 b) $\frac{2}{3} \rightarrow \frac{2 \cdot 5}{3 \cdot 5} = \frac{10}{15} = \frac{2}{3}$

2. Halla dos fracciones equivalentes.

 a) $\frac{2}{3} \rightarrow \frac{2 \cdot 4}{3 \cdot 4} = \frac{8}{12} = \frac{2}{3}$

 b) $\frac{1}{4} \rightarrow \frac{1 \cdot 5}{4 \cdot 5} = \frac{5}{20} = \frac{1}{4}$

 c) $\frac{4}{5} \rightarrow \frac{4 \cdot 6}{5 \cdot 6} = \frac{24}{30} = \frac{4}{5}$

 d) $\frac{9}{2} \rightarrow \frac{9 \cdot 5}{2 \cdot 5} = \frac{45}{10} = \frac{9}{2}$
SIMPLIFICACIÓN DE FRACCIONES

- **Simplificar** una fracción es encontrar otra fracción equivalente a ella dividiendo numerador y denominador por un factor común.

- Observa que el proceso, al contrario que en la amplificación, no se puede realizar indefinidamente. Se termina al encontrar una fracción que no se puede simplificar. Esta fracción se llama **fracción irreducible**.

EJEMPLO

Simplifica las siguientes fracciones.

\[
\frac{5}{10} = \frac{5 \div 5}{10 \div 5} = \frac{1}{2} \quad \text{y} \quad \frac{5}{10} \text{ y } \frac{1}{2} \text{ son equivalentes}
\]

\[
\frac{20}{30} = \frac{20 \div 10}{30 \div 10} = \frac{2}{3} \quad \text{y} \quad \frac{20}{30} \text{ y } \frac{2}{3} \text{ son equivalentes}
\]

3 Amplifica y simplifica la siguiente fracción.

\[
\frac{2}{4}
\]

3. Amplificar: \(\frac{2}{4} = \frac{2 \cdot 2}{4 \cdot 2} = 1 \)

4. Simplificar: \(\frac{2}{4} = \frac{2}{4} : 2 = 1 \)

\[
\frac{2}{4} = \frac{2}{4} = \frac{2}{4} = \frac{2}{4} = \frac{2}{4}
\]

4 Haz lo mismo con estas fracciones.

a) \(\frac{6}{21} \)

3. Amplificar: \(\frac{6}{21} = \frac{6}{21} : = \)

4. Simplificar: \(\frac{6}{21} = \frac{6}{21} = \)

\[
\frac{6}{21} = \frac{6}{21} = \frac{6}{21} = \frac{6}{21}
\]

b) \(\frac{12}{20} \)

3. Amplificar: \(\frac{12}{20} = \frac{12}{20} : = \)

4. Simplificar: \(\frac{12}{20} = \frac{12}{20} = \)

\[
\frac{12}{20} = \frac{12}{20} = \frac{12}{20} = \frac{12}{20}
\]
COMPARAR FRACCIONES

• ¿Qué fracción es mayor, $\frac{1}{2}$ o $\frac{1}{3}$?

Representamos las fracciones con un dibujo y lo vemos fácilmente:

$\frac{1}{2}$

$\frac{1}{3}$

• El dibujo, sin embargo, no siempre es tan claro. Por tanto, vamos a aprender a hacerlo creando una fracción equivalente de cada fracción, con común denominador, es decir, tenemos que conseguir que el denominador de las dos fracciones sea el mismo.

$\frac{1}{2} = \frac{1 \cdot 3}{2 \cdot 3} = \frac{3}{6}$

$\frac{1}{3} = \frac{1 \cdot 2}{3 \cdot 2} = \frac{2}{6}$

6 es el común denominador.

• Ahora, en lugar de comparar $\frac{1}{2}$ con $\frac{1}{3}$, comparamos $\frac{3}{6}$ con $\frac{2}{6}$.

• Como el denominador es común, comparamos los numeradores de $\frac{3}{6}$ y $\frac{2}{6}$ para saber cuál de las fracciones es mayor:

$\frac{3}{6} > \frac{2}{6}$, por tanto, $\frac{1}{2} > \frac{1}{3}$

• Recuerda que, dadas dos fracciones con igual denominador, es mayor la que tiene mayor numerador.

ACTIVIDADES

1. Ordena estas fracciones.

a) $\frac{4}{3} = \frac{\cdot 10}{\cdot 10} = \frac{\cdot 30}{\cdot 30}$
$\frac{3}{2} = \frac{\cdot 15}{\cdot 15} = \frac{\cdot 30}{\cdot 30}$
$\frac{8}{6} = \frac{\cdot}{\cdot} = \frac{\cdot}{\cdot}$
$\frac{4}{5} = \frac{\cdot}{\cdot} = \frac{\cdot}{\cdot}$

COMÚN DENOMINADOR

$\frac{\cdot}{\cdot} > \frac{\cdot}{\cdot} > \frac{\cdot}{\cdot} > \frac{\cdot}{\cdot}$

30 30 30 30

b) $\frac{3}{5} \cdot \frac{3}{10} \cdot \frac{13}{25} \cdot \frac{21}{50}$ Oberva que todas las fracciones pueden expresarse con denominador 50.
BUSCAR EL DENOMINADOR COMÚN

Queremos comparar las siguientes fracciones: \(\frac{7}{10}, \frac{2}{3} \) y \(\frac{3}{5} \)

• ¿Cuáles son los denominadores: 10, 3, 5...

• El común denominador será un número mayor que 10, 3 y 5, pero que tenga a 10, 3 y 5 como divisores, por ejemplo:
 a) El número 12 es mayor que 10, 3 y 5, pero ¿tiene a todos ellos como divisores?

\[
\begin{align*}
12 &= 3 \cdot 4 \\
12 &= 10 \cdot 1.2 \\
12 &= 5 \cdot 2.4 \\
\end{align*}
\]

No tiene a 10 ni a 5 como divisores, solo a 3. Por tanto, 12 no sirve.

b) El número 15 es también mayor que 10, 3 y 5. Pero veamos qué pasa cuando lo utilizamos:

\[
\begin{align*}
15 &= 10 \cdot 1.5 \\
15 &= 3 \cdot 5 \\
15 &= 5 \cdot 3 \\
\end{align*}
\]

Tampoco sirve 15, ya que no tiene a 10 como divisor.

c) Probamos con el número 30.

\[
\begin{align*}
30 &= 10 \cdot 3 \\
30 &= 5 \cdot 6 \\
30 &= 3 \cdot 10 \\
\end{align*}
\]

El número 30 sirve como común denominador, aunque no es el único. Si continuásemos buscando encontraremos más: 60, 90, ...

• Vamos a hallar fracciones equivalentes a las dadas, con denominador común 30:

\[
\begin{align*}
\frac{7}{10} &= \frac{7 \cdot 3}{10 \cdot 3} = \frac{21}{30} \\
\frac{2}{3} &= \frac{2 \cdot 10}{3 \cdot 10} = \frac{20}{30} \\
\frac{3}{5} &= \frac{3 \cdot 6}{5 \cdot 6} = \frac{18}{30} \\
\end{align*}
\]

Por tanto: \(\frac{7}{10}, \frac{2}{3}, \frac{3}{5} \rightarrow \frac{21}{30}, \frac{20}{30}, \frac{18}{30} \)

Ahora ordenamos las fracciones de mayor a menor:

\[
\frac{21}{30} > \frac{20}{30} > \frac{18}{30} > \frac{7}{10} > \frac{2}{3} > \frac{3}{5}
\]
Ordena las siguientes fracciones: \(\frac{7}{12}, \frac{5}{6}, \frac{2}{3}, \frac{5}{2}, y \frac{3}{4} \)

- Nos fijamos en los denominadores: \(\ldots, \ldots, \ldots, \ldots, \ldots \)
- Queremos encontrar un número que contenga a todos los denominadores como divisores.

El número más adecuado es 12.

\[
\frac{7}{12} = \frac{7 \div 6}{12} = \frac{7 \div 7}{12} = \frac{1}{2}
\]

\[
\frac{5}{6} = \frac{5 \div 2}{12} \quad \text{¿Cómo se calcula este número?} \quad 12 \div 6 = 2
\]

\[
\frac{2}{3} = \frac{2 \div 2}{12} \quad \text{¿Cómo se calcula este número?} \quad 12 \div 3 = 4
\]

\[
\frac{5}{2} = \frac{5 \div 2}{12}
\]

\[
\frac{3}{4} = \frac{3 \div 2}{12}
\]

- Ahora ordenamos de mayor a menor:

REDUCIR FRACCIONES A COMÚN DENOMINADOR

Reduce a común denominador estas fracciones: \(\frac{7}{15}, \frac{8}{9} \)

Hallamos el m.c.m. de los denominadores.

<table>
<thead>
<tr>
<th>15</th>
<th>3</th>
<th>9</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[
\frac{15 = 3 \cdot 5}{9 = 3^2} \quad \text{m.c.m. (15, 9) = } 3^2 \cdot 5 = 45
\]

El m.c.m. de los denominadores es el nuevo denominador de las fracciones.

\[
\frac{7}{15} \quad 45 : 15 = 3 \quad \frac{21}{45} \quad \frac{8}{9} \quad 45 : 9 = 5 \quad \frac{40}{45}
\]

Completa la tabla.

<table>
<thead>
<tr>
<th>FRACCIONES</th>
<th>REDUCIDAS A COMÚN DENOMINADOR</th>
<th>ORDENADAS DE MENOR A MAYOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{7}{4}, \frac{3}{5}, \frac{5}{6})</td>
<td>(\frac{7 \cdot 3}{4 \cdot 5}, \frac{3 \cdot 5}{3 \cdot 6}, \frac{5}{4 \cdot 6})</td>
<td>(\frac{47}{12}, \frac{23}{15}, \frac{7}{24})</td>
</tr>
</tbody>
</table>
SUMA (O RESTA) DE FRACCIONES CON IGUAL DENOMINADOR
La suma (o resta) de fracciones con igual denominador es otra fracción con el mismo denominador y cuyo numerador es la suma (o resta) de los numeradores.

EJEMPLO
\[
\frac{1}{3} + \frac{4}{3} = \frac{5}{3}
\]
Un tercio más cuatro tercios son cinco tercios.

SUMA (O RESTA) DE FRACCIONES CON DISTINTO DENOMINADOR
Para sumar (o restar) fracciones con distinto denominador, reducimos primero a denominador común y, después, sumamos (o restamos) sus numeradores.

EJEMPLO
Haz esta suma de fracciones: \(\frac{1}{3} + \frac{6}{5}\)
Para sumar las fracciones hay que obtener fracciones equivalentes con el mismo denominador.

\[
\frac{1}{3} = \frac{1 \cdot 5}{3 \cdot 5} = \frac{5}{15} \quad \frac{6}{5} = \frac{6 \cdot 3}{5 \cdot 3} = \frac{18}{15}
\]
Nos interesa obtener el mínimo común denominador de 3 y 5, en este caso 15.

Ahora sumamos las fracciones con igual denominador:

\[
\frac{1}{3} + \frac{6}{5} = \frac{5}{15} + \frac{18}{15} = \frac{23}{15}
\]

ACTIVIDADES
1 Realiza las siguientes operaciones.
 a) \(\frac{3}{4} - \frac{1}{4} + \frac{5}{4} = \)
 b) \(\frac{10}{7} - \frac{2}{3} = \)
MULTIPLICACIÓN DE FRACCIONES
El producto de dos fracciones es otra fracción cuyo numerador es el producto de los numeradores y el denominador es el producto de los denominadores:

\[
\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}
\]

EJEMPLO

\[
\frac{3}{2} \cdot \frac{4}{5} = \frac{3 \cdot 4}{2 \cdot 5} = \frac{12}{10}
\]

2. Realiza las multiplicaciones de fracciones.
 a) \(\frac{7}{3} \cdot \frac{5}{4}\) =
 b) \(\frac{10}{11} \cdot \frac{13}{9}\) =
 c) \(\frac{6}{8} \cdot \frac{4}{3}\) =
 d) \(\frac{5}{4} \cdot \frac{8}{20}\) =
 e) \(\frac{1}{5} \cdot \frac{4}{15}\) =
 f) \(\frac{7}{8} \cdot \frac{11}{9}\) =
 g) \(\frac{1}{2} \cdot \frac{1}{3}\) =
 h) \(\frac{12}{5} \cdot \frac{4}{3}\) =

DIVISIÓN DE FRACCIONES
La división de dos fracciones es otra fracción cuyo numerador es el producto del numerador de la primera por el denominador de la segunda fracción, y cuyo denominador es el producto del denominador de la primera fracción por el numerador de la segunda:

\[
\frac{a}{b} \div \frac{c}{d} = \frac{a \cdot d}{b \cdot c}
\]

EJEMPLO

\[
\frac{11}{2} \div \frac{3}{5} = \frac{11 \cdot 5}{2 \cdot 3} = \frac{55}{6}
\]

3. Realiza las siguientes divisiones de fracciones.
 a) \(\frac{8}{3} \div \frac{5}{4}\) =
 b) \(\frac{9}{5} \div \frac{5}{7}\) =
 c) \(\frac{4}{5} \div \frac{1}{7}\) =
 d) \(\frac{8}{3} \div \frac{16}{18}\) =
 e) \(\frac{2}{7} \div \frac{4}{3}\) =
 f) \(\frac{6}{4} \div \frac{3}{8}\) =
OPERACIONES COMBINADAS

Cuando se realizan operaciones combinadas, es decir, sumas, restas, multiplicaciones y divisiones a la vez:

- Se hacen primero las operaciones de los paréntesis.
- Luego se resuelven las multiplicaciones y divisiones, de izquierda a derecha.
- Por último, se operan las sumas y restas, en el mismo orden.

EJEMPLO

\[
\frac{3 \cdot 5}{2} + \frac{3 \cdot 1}{5} - \frac{5}{4}
\]

En este caso, la operación queda dividida en tres bloques.

\[
\frac{3 \cdot 5}{2} + \frac{3 \cdot 1}{5} - \frac{5}{4}
\]

Realizamos las operaciones de cada bloque antes de sumar o restar:

- A: Hacemos la multiplicación.
- B: Hacemos la división.
- C: No hay operación a realizar.

Ahora realizamos las sumas y las restas. La solución es \(\frac{25}{4}\).

4 Realiza estas operaciones: \(\frac{7}{3} - \frac{5}{2} \cdot \left(\frac{2}{3} + 1\right)\)

- Tenemos dos bloques con los que debemos operar por separado:

 \[
 \frac{7}{3} - \frac{5}{2} \cdot \left(\frac{2}{3} + 1\right) \rightarrow \begin{cases}
 A: \frac{7}{3} \\
 B: \frac{5}{2} \cdot \left(\frac{2}{3} + 1\right)
 \end{cases}
 \]

 No hay operación a realizar.

 Tenemos que operar por partes, volviendo a dividir en bloques la operación.

- Como no hay sumas o restas fuera de los paréntesis, tiene prioridad el producto:

 \[
 \frac{5}{2} \cdot \left(\frac{2}{3} + 1\right) \rightarrow \begin{cases}
 I: \text{No hay operación a realizar.} \\
 II: \text{Realizamos la suma:} \frac{2}{3} + 1 = \frac{2}{3} + \frac{3}{3} = \frac{5}{3} \rightarrow \frac{5}{2} = = =
 \end{cases}
 \]

Común denominador
FORMA DECIMAL DE UNA FRACCIÓN
Para obtener la forma decimal de una fracción o número racional se divide el numerador entre el denominador.

EJEMPLO

\[
\frac{3}{4} \rightarrow 30 \quad \frac{4}{20} = 0,75
\]

FORMA FRACCIONARIA: \(\frac{3}{4}\) \quad FORMA DECIMAL: 0,75

\[
\frac{14}{11} \rightarrow 14 \quad \frac{11}{30} = 1,2727\ldots
\]

FORMA FRACCIONARIA: \(\frac{14}{11}\) \quad FORMA DECIMAL: 1,2727\ldots = 1,\overline{27}

\[
\frac{13}{6} \rightarrow 13 \quad \frac{6}{10} = 2,166\ldots
\]

FORMA FRACCIONARIA: \(\frac{13}{6}\) \quad FORMA DECIMAL: 2,166\ldots = 2,\overline{16}

ACTIVIDADES

1. Expresa en forma decimal estas fracciones y ordénalas.
 a) \(\frac{3}{5}\)
 b) \(\frac{7}{6}\)
 c) \(\frac{9}{5}\)
 d) \(\frac{31}{25}\)
 e) \(\frac{37}{30}\)
 f) \(\frac{17}{6}\)

 < < < < < < < < < < < < <
TIPOS DE NÚMEROS DECIMALES
Al dividir el numerador entre el denominador de una fracción para obtener su expresión decimal pueden darse estos casos.

- **Si el resto es cero:**
 - Cuando el cociente no tiene parte decimal, tenemos un **número entero**.
 - Cuando el cociente tiene parte decimal, decimos que es un **decimal exacto**.

- **Si el resto no es cero:** las cifras del cociente se repiten, la expresión decimal tiene infinitas cifras. Se obtiene un **decimal periódico**.
 - Cuando la parte que se repite comienza desde la coma, se llama **decimal periódico puro**.
 - Cuando la parte que se repite no comienza desde la coma, se llama **decimal periódico mixto**.

EJEMPLO

\[
\frac{3}{4} = 0,75 \quad \text{Decimal exacto} \quad \frac{14}{11} = 1,27 \quad \text{Decimal periódico puro} \quad \frac{13}{6} = 2,1\dot{6} \quad \text{Decimal periódico mixto}
\]

ACTIVIDADES

1. Completa la tabla, clasificando la expresión decimal de las fracciones en exactas, periódicas puras o periódicas mixtas.

<table>
<thead>
<tr>
<th>FORMA FRACCIONARIA</th>
<th>FORMA DECIMAL</th>
<th>DECIMAL EXACTO</th>
<th>DECIMAL PERIÓDICO PUNO</th>
<th>DECIMAL PERIÓDICO MIXTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{5}{3})</td>
<td>(1,\dot{6})</td>
<td>No</td>
<td>Sí</td>
<td>No</td>
</tr>
<tr>
<td>(\frac{7}{6})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{9}{5})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{31}{25})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{37}{30})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{17}{6})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Escribe en cada número las cifras necesarias para completar diez cifras decimales.

 a) 1,347347...
 b) 2,7474...
 c) 4,357357...
 d) 0,1313...
 e) 3,2666...
 f) 0,25373737...
 g) 1,222...
 h) 43,5111...
Todo número decimal exacto o periódico se puede expresar en forma de fracción. Para ello hay que multiplicarlo por la potencia de 10 adecuada y realizar una serie de operaciones hasta obtener una fracción.

NÚMEROS DECIMALES EXACTOS EN FORMA DE FRACCIÓN

- Llamamos x a 0,32.
- Multiplicamos por la unidad seguida de tantos ceros como cifras decimales tiene el número.
- Simplificamos, si es posible.

\[
\begin{align*}
0,32 & = 0,32 \\
100x & = 100 \cdot 0,32 \\
100x & = 32 \\
x & = \frac{32}{100} \\
x & = \frac{8}{25} & 0,32 & = \frac{8}{25}
\end{align*}
\]

ACTIVIDADES

1. Completa la operación.

\[
\begin{align*}
0,14 & = 0,14 \\
100x & = 100 \cdot 0,14 \\
100x & = \\
x & = \frac{100}{100} \\
x & = \quad 0,14 = \quad
\end{align*}
\]

2. Halla la forma fraccionaria de este número decimal.

\[
\begin{align*}
0,3 & = 0,3 \\
10x & = 10 \cdot 0,3 \\
x & = \quad 0,3 = \quad
\end{align*}
\]

¿Por qué hemos multiplicado por 10 y no por 100?
Expresa estos números decimales como fracción.

a) ¿Por qué valor multiplicamos?

\[x = 0,101 \]

\[0,101 = \boxed{\text{--}} \]

b)

\[x = \boxed{\text{--}} \]

\[0,24 = \boxed{\text{--}} \]

c)

\[x = \boxed{\text{--}} \]

\[0,7 = \boxed{\text{--}} \]

d)

\[x = \boxed{\text{--}} \]

\[0,44 = \boxed{\text{--}} \]

Expresa mediante un número decimal la parte gris de la figura.

Escribimos de forma fraccionaria la parte gris de la figura.

Pasamos a forma decimal.
NÚMEROS DECIMALES PERIÓDICOS PUROS EN FORMA DE FRACCIÓN

Queremos obtener la forma fraccionaria del número decimal periódico puro 2,333... = 2,\(\overline{3} \).

- Si 2,333... no tuviera infinitas cifras decimales, podríamos obtener la forma fraccionaria como en el caso de los números decimales exactos.

- Por tanto, no podemos actuar de esta manera.

\[
\begin{align*}
2,333... \\
x &= 2,333... \\
10x &= 10 \cdot 2,333... \\
10x &= 23,333... \\
x &= \frac{23,333...}{10} \\
\Rightarrow 2,333... &= \frac{23,333...}{10} \\
\end{align*}
\]

- Fíjate en los pasos que seguimos.

Multiplicamos por la unidad seguida de tantos ceros como cifras tiene el período,

\[
\begin{align*}
2,333... \\
x &= 2,333... \\
10x &= 10 \cdot 2,333... \\
10x &= 23,333... \\
\end{align*}
\]

Realizando esta resta eliminamos la parte decimal.

\[
\begin{align*}
10x &= 23,333... \\
-x &= -2,333... \\
9x &= 21 \\
\therefore x &= \frac{21}{9} \\
\end{align*}
\]

Simplificamos.

\[
\begin{align*}
x &= \frac{7}{3} \\
\Rightarrow 2,3 &= \frac{7}{3} \\
\end{align*}
\]

- Siempre hay que simplificar, si se puede, la fracción resultante.
5 Completala las siguientes operaciones.

a) \(\hat{5,7} = 5,777... \)

\[
\begin{align*}
\hat{x} &= 5,777... \\
10x &= \\
10x &= \\
10x &= \\
-\hat{x} &= -5,777... \\
9x &= \\
&= \\
\hat{x} &= \\
\hat{5,7} &=
\end{align*}
\]

b) \(\hat{45,8} = 45,888... \)

\[
\begin{align*}
\hat{x} &= 45,888... \\
&= 10 \cdot 45,888... \\
&= 458,888... \\
\hat{x} &= 458,888... \\
-\hat{x} &= -458,888... \\
\hat{x} &= \\
\hat{45,8} &=
\end{align*}
\]

c) \(\hat{7,3} \)

\[
\begin{align*}
\hat{x} &= \\
-\hat{x} &= \\
\hat{x} &= \\
\hat{7,3} &=
\end{align*}
\]
6 Calcular la forma fraccionaria de los números decimales.

a) \(15,474747\ldots \)

\[
\begin{align*}
x &= 15,474747\ldots \\
100x &= 100 \cdot 15,474747\ldots \\
100x &= \quad \\
\hline
-100x &= -1,5474747\ldots \\
99x &= \quad \\
\hline
\end{align*}
\]

\[x = \quad \Rightarrow 15,47 = \quad \]

b) \(24,35 \)

\[
\begin{align*}
x &= 24,353535\ldots \\
\hline
100x &= 2,4353535\ldots \\
9x &= \quad \\
\hline
\end{align*}
\]

\[x = \quad \Rightarrow 24,35 = \quad \]

c) \(103,251251 \)

\[
\begin{align*}
x &= \quad \\
-100x &= -1,03251251\ldots \\
99x &= \quad \\
\hline
\end{align*}
\]

\[x = \quad \Rightarrow 103,251 = \quad \]
NÚMEROS DECIMALES PERIÓDICOS MIXTOS EN FORMA DE FRACCIÓN

Queremos obtener la forma fraccionaria del número decimal periódico mixto 2,1333… = 2,\overline{13}.

- Si actuamos como en el caso de los decimales puros, tenemos que:

\[x = 2,1333… \]
\[10x = 10 \cdot 2,1333… \]
\[10x = 21,333… \]
\[\frac{10x}{9} = 2,3666… \]
\[x = \frac{23}{2} \]

No obtenemos una fracción.

- Fíjate en los pasos que seguimos.

Multiplicamos por la unidad seguida de tantos ceros como cifras tiene su parte periódica y no periódica.

\[2,1333… \]
\[x = 2,1333… \]
\[100x = 100 \cdot 2,1333… \]
\[100x = 213,333… \]
\[10x = 21,333… \]
\[100x = 213,333… \]
\[-10x = -21,333… \]
\[90x = 192 \]
\[x = \frac{192}{90} \]
\[x = \frac{32}{15} \]
\[2,\overline{13} = \frac{32}{15} \]
7 Expresa estos números decimales en forma de fracción.

a) $5,\overline{37} = 5,3777...$

$x = 5,3777...$

$100x = 100 \cdot 5,3777... = $

$10x = $

$100x = $

$-10x = -53,777...$

$90x = $

$x = $ \rightarrow $5,\overline{37} = $

b) $45,\overline{28} = 45,2888...$

$x = 45,2888...$

$x = $

$x = $ \rightarrow $45,\overline{28} = $

c) $0,\overline{73}$

$x = $

$-x = $

$= $

$x = $ \rightarrow $0,\overline{73} = $
Completa y expresa en forma de fracción.

\[
\begin{align*}
x &= 3,57474... \\
1000x &= 1000 \cdot 3,57474... \\
1000x &= 3574,7474... \\
10x &= 35,7474...
\end{align*}
\]

1000x = 3574,7474...

- 10x = 35,7474...

990x =

\[
x = ______________
\]

\[
3,574 = ___________
\]

Expresa como una fracción.

\[
x = 5,24545...
\]

\[
\begin{align*}
x &= 5,24545... \\
10x &= 52,4545...
\end{align*}
\]

\[
x = ______________
\]

\[
5,245 = ___________
\]

NÚMEROS IRRACIONALES

Hay números decimales que no se pueden expresar como una fracción.

\[
\sqrt{2} = 1,4142... \quad \pi = 3,1415... \quad \sqrt{5} = 2,2360...
\]

Estos números reciben el nombre de **números irracionales**.

Clasifica los siguientes números.

a) 0,14 b) 4,37777... c) 3,\(\overline{4}\) d) 2,44 e) 43,2727... f) \(\sqrt{2} = 1,4142...\)

<table>
<thead>
<tr>
<th>DECIMAL EXACTO</th>
<th>DECIMAL PERIÓDICO PURO</th>
<th>DECIMAL PERIÓDICO MIXTO</th>
<th>IRRACIONAL</th>
</tr>
</thead>
</table>